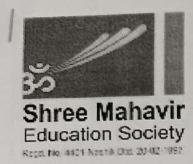
Shree Mahavir Education Society's SANGHAVI COLLEGE OF ENGINEERING, NASHIK

(Approved by AICTE, DTE & Affiliated to Savitribai Phule Pune University)

Supporting Documents for


2.2. Catering to Student Diversity

2.2.1

The institution assesses the learning levels of the students and organizes special programmes for advanced learners and slow learners

Address:

Sanghavi College of Engineering, Mhasrul-Varvandi Road, Varvandi, Nashik-422202 Maharashtra, India. Website: - engineering.shreemahavir.org

SANGHAVI COLLEGE OF ENGINEERING, NASHIK

Electrical Engineering Department

Result Analysis A.Y.2022-2023 (OCT/NOV 2022)

THIRD YEAR

SU	BJECT NAME FOR YEAR====>		ITM	PE	EM- II	EIDC M	AME S	SEMI NAR	PE	EN	1-11	EID	CM	МО	Total marks obtained	%	SGPA	Result	Rank
	SEMESTER							ODD	4	10		16.			(Out oF 700)				
SR.N		PRN NO.	TH	TH	TH	TH	TH	TW	PR	TW	PR	TW	OR						
0.	Name of Student	TOTAL MARKS	100	100	100	100	100	50	50	25	25	25	25						
1	RENIWAL ABHISHEK VINOD	72221893B	28	26	33	25	41	42	22	18	18	13	13	279	700	39.86	NA	FAILS WITH ATKT	20
2	BAGUL VIKRAM ANNASAHEB	72159960F	27	21	34	31	30	35	AB	17	AB	14	12	221	700	31.57	NA	FAILS WITH ATKT	27
3	BHADKE CHAINTAYA NILKHANTHA	72221894L	25	19	21	29	31	36	25	17	21	13	15	252	700	36.00	NA	FAILS WITH ATKT	23
4	BHADKE RUTIK SHAM	72221895J	25	15	15	22	25	35	24	17	16	13	14	221	700	31.57	NA	FAILS WITH ATKT	27
5	BHAGWAT SUNNY BHARAT	72221896G	29	21	29	35	22	40	23	18	15	22	20	274	700	39.14	NA	FAILS WITH ATKT	21
6	BHOYE PALLAVI VISHNU	72221897E	31	29	27	47	27	44	36	21	21	23	23	329	700	47.00	NA	FAILS WITH ATKT	14
7	BHUSARE MAYUR TANAJI	72221898C	40	20	34	40	34	35	25	. 17	16	14	12	287	700	41.00	NA	FAILS WITH ATKT	18
8	CHAUDHARI VISHAL ASHOK	72159970C	40	34	53	54	59	41	33	20	19	22	20	395	700	56.43	NA	FAILS WITH	5

						,				1		1							
SU	BJECT NAME FOR YEAR====>		ITM	PE	EM- II	EIDC M	AME S	SEMI NAR	PE	EN	/- II	EID	см	мо	Total marks obtained	%	SGPA	Result	Rank
	SEMESTER							ODD							(Out of 700)				
CD A		PRN NO.	тн	TH	ТН	ТН	тн	TW	PR	TW	PR	TW	OR		7007				
SR.N	Name of Student	TOTAL MARKS	100	100	100	100	100	50	50	25	25	25	25				•		
9	DEEP BALKRISHNA TUNGARE	72159972K	62	32	44	62	55	43	32	22	19	23	22	416	700	59.43	NA	FAILS WITH ATKT	3
10	DESHMUKH SWAJAL OMKARRO	72221 8 99M	71	56	68	63	62	42	35	23	22	23	23	488	700	69.71	8.48	PASS	1
11	GAVIT MIHIR SONIRAM	72221900J	43	23	44	42	31	39	36	18	21	22	21	340	700	48.57	NA	FAILS WITH ATKT	12
12	GOVIND DURGESH SADASHIV	72221901G	АВ	АВ	АВ	АВ	АВ	36	АВ	18	АВ	14	12	80	700	11.43	NA	FAILS	35
13	JAGTAP YADNESH DHARMRAJ	72221902E	28	30	16	47	23	38	30	21	18	16	21	288	700	41.14	NA	FAILS WITH	17
14	KADAM ABHISHEK RAMKRUSHNA	72221903C	26	29	22	32	4	42	30	19	16	20	21	261	700	37.29	NA	FAILS WITH ATKT	22
15	KALOGE ADITYA PUNDLIK	72221904M	33	13	21	19	36	37	28	17	6	20	17	247	700	35.29	NA	FAILS WITH ATKT	24
16	KEDARE SUBODH SATISH	72221905K	15	15	14	31	28	36	8	18	5	19	15	204	700	29.14	NA	FAILS WITH ATKT	31
17	KHANDAVE ARJUN DNYANESHWAR	72221906Н	29	33	50	29	42	36	36	19	19	19	19	331	700	47.29	NA	FAILS WITH	13
18	KHODE YOGESH RAVINDRA	72159989D	43	20	34	50	49	40	25	20	19	21	21	342	700	48.86	NA	FAILS WITH	11
19	KORADKAR KUNAL SUNIL	72221907F	43	42	40	50	41	39	36	20	16	20	20	367	700	52,43	5.81	PASS	7
20	KUMAVAT AKASH EKNATH	72221908D	33	35	26	46	41	35	22	18	16	18	16	306	700	43.71	NA	FAILS WITH	16

SUI	BJECT NAME FOR YEAR====>	THIRD	ITM	PE	EM- II	EIDC	AME S	SEMI NAR	PE	EIV	1-11	EID	СМ	мо	Total marks obtained	%	SGPA	Result	Rank
	SEMESTER	THE PARTY OF THE P						ODD							(Out of 700)				
		PRN NO.	тн	тн	тн	тн	ТН	TW	PR	TW	PR	TW	OR	-					
o.	Name of Student	TOTAL MARKS	100	100	100	100	100	50	50	25	25	25	25					FAILS WITH	
21	KUNAL ABHIMAN GOLAIT	72221909B	32	27	20	42	40	33	АВ	20	АВ	18	15	247	700	35.29	NA	ATKT	24
22	NIKAM KANCHANMALA	72221910F	3	1	21	11	14	33	АВ	17	АВ	14	12	126	700	18.00	NA	FAILS WITH ATKT	34
23	ASHOK NIKHIL PANDURANG JADHAV	72221911D	42	30	41	49	59	35	35	21	6	16	19	353	700	50.43	NA	FAILS WITH ATKT	9
24	PAGAR MAYUR RAJENDRA	71807541C	42	30	23	44	40	40	40	21	21	23	22	346	700	49.43	NA	FAILS WITH ATKT	10
25	PAGARE LALIT NANDU	72221912B	23	4	12	12	13	36	АВ	18	АВ	12	15	145	700	20.71	NA	FAILS WITH ATKT	33
26	PAGARE POOJA SANDIP	72221913L	4	6	12	28	28	35	АВ	17	AB	13	12	155	700	22.14	NA	FAILS WITH ATKT	32
27	PAWAR RISHABH RAJESH	72221914J	25	18	28	47	43	36	38	19	16	22	23	315	700	45.00	NA	FAILS WITH ATKT	15
28	PAWAR SHUBHAM CHANDRAKANT	72221915G	37	17	40	50	49	40	35	21	19	23	23	354	700	50.57	NA	FAILS WITH ATKT	8
29	PENDHARKAR SNEHA ANIL	72221916E	19	13	23	41	4	35	8	17	18	13	17	208	700	29.71	NA	FAILS WITH ATKT	30
30	RAJOLE SHIVAM SURESH	72221917C	46	34	54	61	54	43	35	22	21	23	23	416	700	59.43	NA	FAILS WITH ATKT	3
	SHINDE AKSHAY VILAS	72221919K	19	14	17	25	19	34	23	17	17	16	14	215	700	30.71	NA	FAILS WITH	29
32	SHUBHAM DASHRATH JAGZAP	72221920C	28	14	11	27	33	35	28	18	17	17	18	246	700	35.14	NA	FAILS WITH	26
	SURYAWANSHI MAHESH KESHAV	72221921M	29	17	39	45	31	36	22	18	16	17	16	286	700	40.86	NA	FAILS WITH	19

SU	BJECT NAME FOR YEAR——>		ITM	PE	EM- II	EIDC	AME S	SEMI NAR	PE	EN	л-II	EID	см	мо	Total marks obtained	%	
	SEMESTER							ODD							(Out oF 700)		
CD A		PRN NO.	TH	TH	TH	ТН	ТН	TW	PR	TW	PR	TW	OR	Br.	700)		
SR.N O.	Name of Student	TOTAL MARKS	100	100	100	100	100	50	50	25	25	25	25				
34	TANGTODE VRUSHALI RAJENDRA	72221922K	44	21	38	58	45	41	33	21	21	23	23	368	700	52.57	
35	WAGH NIKITA PANDURANG	72221923H	64	40	65	75	52	42	42	23	21	23	23	470	700	67.14	
Total	no. of students		35	35	35	35	35	35	35	35	35	35	35				
No. of	f students appeared		34	34	34	34	34	35	29	35	29	35	35				
No. of	students absent		1	1	1	1	1	0	6	0	6	0	0				
No. of	students in Dist.		0	0	0	1	0	0	0	0	0	0	0				
No. of	students in first class		3	0	2	3	1	0	0	0	0	0	0	1881			
No. of	students in second class		9	3	8	16	15	13	2	0	0	0	0				
No. of	students Pass		12	3	10	20	16	13	2	0	0	0	0				
No. of	students Fail		22	31	24	14	18	22	27	35	29	35	35	WE A			
Percer	ntage		35.3	8.82	29.4	58.8	47.1	37.1	6.9	0	0	0	0	77/6			San

Head
Electrical Engineering Dept.
Sanghavi College of Engineering Nashik

Rank

6

2

Result

FAILS WITH

ATKT

PASS

SGPA

NA

NA

Shree Mahavir Education Society's Sanghavi College of Engineering, Nashik Advance Learners

Academic Year: 2022-2023

Department: Electrical Engineering

Class: Third Year

Students Having % above 40 in the first semester of TE Engineering

Sr. No.	Name of Student	Percentage
1	Deshmukh Swajal Omkarro	69.71
2	Wagh Nikita Pandurang	67.14
3	Deep Balkrishna Tungare	59.43
4	Rajole Shivam Suresh	59.43
5	Chaudhari Vishal Ashok	56.43
6	Tangtode Vrushali Rajendra	52.57
7	Koradkar Kunal Sunil	52.43
8	Pawar Shubham Chandrakant	50.57
9	Nikhil Pandurang Jadhav	50.43
10	Pagar Mayur Rajendra	49.43
11	Khode Yogesh Ravindra	48.86
12	Gavit Mihir Soniram	48.57
13	Khandave Arjun Dnyaneshwar	47.29
14	Bhoye Pallavi Vishnu	47.00
15	Pawar Rishabh Rajesh	45.00
16	Kumavat Akash Eknath	43.71
17	Jagtap Yadnesh Dharmraj	41.14
18	Bhusare Mayur Tanaji	41.00
19	Suryawanshi Mahesh Keshav	40.86

Head
Electrical Engineering Dept
Sanghavi College of Engineering, Nashib

Shree Mahavir Education Society's

Sanghavi College of Engineering, Nashik Slow Learners

Academic Year: 2022-2023

Department: Electrical Engineering

Class: Third Year

Students Having % below 40 in the first semester of TE Engineering

Sr. No.	Name of Student	Percentage
1	Govind Durgesh Sadashiv	11.43
2	Nikam Kanchanmala Ashok	18.00
3	Pagare Lalit Nandu	20.71
4	Pagare Pooja Sandip	22.14
5	Kedare Subodh Satish	29.14
6	Pendharkar Sneha Anil	29.71
7	Shinde Akshay Vilas	30.71
8	Bagul Vikram Annasaheb	31.57
9	Bhadke Rutik Sham	31.57
10	Shubham Dashrath Jagtap	35.14
11	Kaloge Aditya Pundlik	35.29
12	Kunal Abhiman Golait	35.29
13	Bhadke Chaintaya Nilkhantha	36.00
14	Kadam Abhishek Ramkrushna	37.29
15	Bhagwat Sunny Bharat	39.14
16	Reniwal Abhishek Vinod	39.86

48 Bankus Head

Electrical Engineering Dept. Sanghavi College of Engineering Nashi F / 45 / 00

FORMAT

Unit Test - II

Name of College:	Engineering			Date:	3/4/23
Name of Department:	Electrical				
Academic Year:	22-23	Class:	TE	Semester:	EVEN
Name of Subject:	Power System-II	Marks:	25	Time:	1Hrs
Roll No.:	a 8	Name o	f Student: Ch	audhasi Vi	shal

Q. No.		Question De	scription	AND BELLEVIEW	Marks	со
140.	The per unit impedance	e of a transformer is				
1 */	a) larger if computed from primary side than from secondary side	b) the same whether computed from primary or secondary side	c) always zero	d) always infinity	2	CO2
	A synchronous generat generator will be	or is rated at 40 MVA, 14.	6 kV and 50 Hz. The base	impedance of the	(2)	CO2
2	a) 5.33 Ω	b)6.29 Ω	c)3.57 Ω	d)7.25 Ω		
	If the fault is very near	I er to the generator, the fa	ult current is		2	CO2
*	a)less	b)larger	Czero	d)any of the above		COZ
		een sub transient (X"), trai	nsient (X') and synchrono	us reactance (X) ?	(2)	CO2
4	a)X" > X' >X	b)X" < X' > X	c)X" > X' < X	(d) X" < X' < X	0	
	A synchronous generat	or rated 11 kV, 50 MVA h	as a per unit impedance o 0 MVA base would be		(2)	CO2
2	a)0.133 pu	b)0.2 pu	c)0.1 pu	(d)0.15 pu		
6	Per unit impedance of the updated per unit in	an alternator is 0.2. If the npedance value will be	base voltage is decreased	d by 1.1 times, then	2	CO2
X	a)0.22	b)0.2	c)0.181	d)0.242		
		is not an unsymmetrical	fault?			1
7	a)Single Line to ground fault	b)Line-to-line fault	c)Double line-to- ground fault	d)Line-to-line-to- line fault	2	CO3
	can be defined of different potential,	as an abnormal connecti whether made intentiona	on of very low impedance lly or accidentally.	e between two points		
8	a)Symmetrical faults	b)Short circuit faults	c)Open circuit faults	d)Unsymmetrical faults	2	CO3

	Which of the following	faults occurs most freque	ently?		(3)	602
9	a)3 phase fault	b)LLG fault	c)LL fault	d)LG fault	(2)	CO3
	is a series type	unbalanced fault that occ	curs in a power system.			
10 ×	a)Line – to – line fault	b)Double line – to – ground fault	c)Single line – to – ground fault	d)Open conductor fault	2	CO3
	The % reactance of a 10	00 kVA, 5 kV, 5 Ω reactan	ce is given by:		0	
11	(a)2%	b)20%	c)40%	d)4%	(2)	CO3
	The power system is su current equal to zero.	I ubjected to a fault which i The nature of fault is	makes the zero-sequenc	e component of	2	CO3
12	a)Double line to ground fault	b)Double line fault	c)Line to ground fault	d)Three phase to ground fault	2	COS
	Fault level means	Marine and Trail			1	CO3
13	a)Voltage at fault condition	b)Fault Current	c)Fault P.F.	d)Fault MVA	1	CO3
	Condition			Q.1toQ.6.	6	
				Q.7.to Q.13	4	
				Obtained Marks	10	

F/45/00

FORMAT

Unit Test - II

Name of College:	Engineering			Date:	3-4-23
Name of Department:	Electrical				
Academic Year:	2022/23	Class:	TE	Semester:	EVEN
Name of Subject:	Power System-II	Marks:	25	Time:	1Hrs
Roll No.:	25	Name o	Student: Pagare	Pooja	S

Q. No.		Question De	escription		Marks	со
	The per unit impedance	e of a transformer is				
سلي	a) larger if computed from primary side than from secondary side	b) the same whether computed from primary or secondary side	c) always zero	d) always infinity	2	CO2
2	A synchronous general generator will be	tor is rated at 40 MVA, 14.	6 kV and 50 Hz. The base	e impedance of the	2	CO2
7	a) 5.33 Ω	(b)6.29 Ω	c)3.57 Ω	d)7.25 Ω		COZ
2	If the fault is very near	er to the generator, the fa	ult current is		(2)	CO2
	a)less	(b)larger	c)zero	d)any of the above	6	COZ
A		een sub transient (X"), tran		Control of the Contro	(2)	CO2
	a)X" > X' >X	b)X" < X' > X	c)X" > X' < X	(d) X" < X' < X		
5		or rated 11 kV, 50 MVA ha ace referred to a 22 kV, 150		of 0.2 pu on its own	2	CO2
5×	a)0.133 pu	b)0.2 pu	c)0.1 pu	d)0.15 pu		
6	Per unit impedance of the updated per unit in	an alternator is 0.2. If the I	base voltage is decrease	ed by 1.1 times, then	2	CO2
X	a)0.22	(b)0.2	c)0.181	d)0.242		
	Which of the following	is not an unsymmetrical fa	ault?			
7	a)Single Line to ground fault	b)Line-to-line fault (c)Double line-to- ground fault	d)Line-to-line-to- line fault	2	CO3
		as an abnormal connection whether made intentionall		e between two points		
8	a)Symmetrical faults	b)Short circuit faults	c)Open circuit faults	d)Unsymmetrical faults	2 2 2 2	CO3

	Which of the following f	aults occurs most frequen	itly?		0	
19	a)3 phase fault	b)LLG fault	c)LL fault	d)LG fault	(2)	CO3
	is a series type u	inbalanced fault that occu	irs in a power system.		Ch	
10	a)Line – to – line fault	b)Double line – to – ground fault	c)Single line – to – ground fault	d)Open conductor fault	(2)	CO3
	The % reactance of a 10	0 kVA, 5 kV, 5 Ω reactance	e is given by:			
艾	a)2%	(b)20%	c)40%	d)4%	2	CO3
	The power system is sul current equal to zero. T	bjected to a fault which m he nature of fault is	akes the zero-sequence	component of	63	CO3
12	a)Double line to ground fault	b)Double line fault	c)Line to ground fault	d)Three phase to ground fault	(2)	
	Fault level means				0	602
13	a)Voltage at fault condition	b)Fault Current	c)Fault P.F.	d)Fault MVA	(1)	CO3
	Condition			Q.1toQ.6.	6	
				Q.7.to Q.13	9	
				Obtained Marks	15	

F/24/00	FORMAT	in the second
	Assignments With CO	

Name of College:	Engine	ering	Date:	13/9/2022	
Name of Department:	Electric	al			
Year:	2nd			Semester:	Odd
Course (Subject) Name:	Power Generation Technologies		Course (Subject) Code:	203141	
Assignment No:	A1	Unit No:	1	Date of Submission:	20/9/2023

COs	Course Outcomes Statement
1	Identify components and elaborate working principle of conventional power plants.
2	Recognize the importance and opportunities of renewable energies.
3	Calculate and control power output of wind solar, and hydro power plant.
4	Describe process of grid interconnection of distributed generation and requirements.
5	Interpret the environmental and social impact of various generation technologies.

Sr. No	Questions	Attainment to which CO
1	Explain reheat rankine cycle with the help of schematic and T-S Diagram.	CO1
2	Explain site selection parameters for thermal power plant.	CO1
3	Explain the working of economizer used in thermal power plant with the help of diagram.	CO1
4	Write a short note on Coal Handling System.	CO1
5	Explain with neat sketch Working of an Electrostatic Precipitator.	CO1

Suphade Ms. S. S. Uphade Name of Faculty and Signature

F /24 / 00	FORMAT	Control Spring
	Assignments With CO	

Name of College:	Enginee	ring		Date:	
	Liiginics	Litgineering			
Name of Department:	Electrica	Electrical			
Year:	2nd		Semester:	Odd	
Course (Subject) Name:	Power Generation Technologies		Course (Subject) Code:	203141	
Assignment No:	A2	Unit No:	2	Date of Submission:	

Course Outcomes Statement
Identify components and elaborate working principle of conventional power plants.
Recognize the importance and opportunities of renewable energies.
Calculate and control power output of wind solar, and hydro power plant.
Describe process of grid interconnection of distributed generation and requirements.
Interpret the environmental and social impact of various generation technologies.

Sr.	Questions	Attainment to which CO
No	Explain the nuclear reactor in nuclear power plant.	CO1
2	Explain main components and working of diesel power plant.	CO1
3	Draw and Explain open loop cycle gas power plant.	CO1
4	Describe the procedure for nuclear waste disposal in nuclear power plant.	CO1
5	With the help of neat diagram explain combined cycle power plant.	CO1

Ms. S. S. Uphade Name of Faculty and Signature

F/24/00	FORMAT	San Ve me
	Assignments With CO	

Name of College:	Enginee	Engineering			
Name of Department:	Electrica	Electrical			
Year:	2nd		Semester:	Odd	
Course (Subject) Name:	Power Generation Technologies		Course (Subject) Code:	203141	
Assignment No:	А3	Unit No:	3	Date of Submission:	

COs	Course Outcomes Statement
1	Identify components and elaborate working principle of conventional power plants.
2	Recognize the importance and opportunities of renewable energies.
3	Calculate and control power output of wind solar, and hydro power plant.
4	Describe process of grid interconnection of distributed generation and requirements.
5	Interpret the environmental and social impact of various generation technologies.

Sr. No	Questions	Attainment to which CO
1	Write a short note on Hydrograph.	CO2 & CO3
2	Explain the working of Francis Turbine with neat Diagram.	CO2 & CO3
3	Give the function of following components 1. Spillways 2. Dam 3. Penstock	CO2 & CO3
4	Explain the working of Pelton Wheel Turbine with neat diagram in hydro power plant.	CO2 & CO3
5	Write a short note on Flow Duration Curve.	CO2 & CO3

Suphade Ms. S. S. Uphade Name of Faculty and Signature

F /24 / 00	FORMAT	-
	Assignments With CO	

Name of College:	Engineering			Date:	
Name of Department:	Electrica	Electrical			
Year:	2nd		Semester:	Odd	
Course (Subject) Name:	Power Generation Technologies		Course (Subject) Code:	203141	
Assignment No:	A4	Unit No:	4	Date of Submission:	

COs	Course Outcomes Statement
1	Identify components and elaborate working principle of conventional power plants.
2	Recognize the importance and opportunities of renewable energies.
3	Calculate and control power output of wind solar, and hydro power plant.
4	Describe process of grid interconnection of distributed generation and requirements.
5	Interpret the environmental and social impact of various generation technologies.

Sr. No	Questions	which CO
1	Explain how the wind pattern affects power generation in wind energy system.	CO2 & CO3
2	Derive the relation of power in the wind in case of wind energy system.	CO2 & CO3
	Explain in detail the impact of tower height in wind turbine plant.	CO2 & CO3
3	Describe the types of wind turbine electrical generators.	CO2 & CO3
4	Explain environmental impacts of wind turbine.	CO2 & CO3
5	Explain channelles impass 5	

Ms. S. S. Uphade Name of Faculty and Signature

F /24 / 00	FORMAT	1-1-2
· · · · · · · · · · · · · · · · · · ·	Assignments With CO	

Name of College:	Engineering			Date:	
Name of Department:	Electrical				
Year:	2nd		Semester:	Odd	
Course (Subject) Name:	Power Generation Technologies		Course (Subject) Code:	203141	
Assignment No:	A5	Unit No:	5	Date of Submission:	

COs	Course Outcomes Statement
1	Identify components and elaborate working principle of conventional power plants.
2	Recognize the importance and opportunities of renewable energies.
3	Calculate and control power output of wind solar, and hydro power plant.
4	Describe process of grid interconnection of distributed generation and requirements.
5	Interpret the environmental and social impact of various generation technologies.

Questions	Attainment to which CO
Explain the working of PV cell and simplest equivalent circuit for a photovoltaic cell.	CO2 &CO3
What is paraboloid dish collector? Discuss its working with a neat sketch.	CO2 &CO3
Explain the methods of measurement of solar radiation.	CO2 &CO3
Explain the term solar constant.	CO2 &CO3
Define the terms in solar energy system i) Concentration Ratio ii) Cloudy Index	CO2 &CO3
	Explain the working of PV cell and simplest equivalent circuit for a photovoltaic cell. What is paraboloid dish collector? Discuss its working with a neat sketch. Explain the methods of measurement of solar radiation. Explain the term solar constant. Define the terms in solar energy system

Suphade Ms. S. S. Uphade Name of Faculty and Signature

F /24 / 00	FORMAT	PAIRCE
	Assignments With CO	

Name of College:	Engineering			Date:	
Name of Department:	Electrical				
Year:	2nd		Semester:	Odd	
Course (Subject) Name:	Power Generation Technologies		Course (Subject) Code:	203141	
Assignment No:	A6	Unit No:	6	Date of Submission:	

COs	Course Outcomes Statement
1	Identify components and elaborate working principle of conventional power plants.
2	Recognize the importance and opportunities of renewable energies.
3	Calculate and control power output of wind solar, and hydro power plant.
4	Describe process of grid interconnection of distributed generation and requirements.
5	Interpret the environmental and social impact of various generation technologies.

Questions	Attainment to which CO
Write a short note on Ocean Thermal Energy Conversion.	CO4
Explain municipal solid waste to energy conversion.	CO4
What is biomass? How it is useful in electric sources connection?	CO4
Draw a schematic diagram of Tidal Power Plant.	CO4
Explain in brief fuel cell and its applications.	CO4
	Write a short note on Ocean Thermal Energy Conversion. Explain municipal solid waste to energy conversion. What is biomass? How it is useful in electric sources connection? Draw a schematic diagram of Tidal Power Plant.

Ms. S.S. Uphade Name of Faculty and Signature